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An analytical and numerical study is reported of steady-state natural convection in a 
two-dimensional rectangular porous cavity saturated by a non-Newtonian fluid. The 
enclosure is heated and cooled isothermally from the vertical sides, while the horizontal 
walls are adiabatic. The modified Darcy power-law model proposed by Pascal (1983) is 
used to characterize the non-Newtonian fluid behavior. In the large Rayleigh number limit, 
the boundary-layer equations are solved analytically upon introducing a similarity 
transformation. The core structure is determined using an integral form of the energy 
equation. Numerical integrations are carried out using the Runge-Kutta method. Solutions 
for the flow and temperature fields and Nusselt numbers are obtained in terms of a modified 
Rayleigh number R, the aspect ratio of the cavity A, and the power-law index n. A 
numerical study of the same phenomenon, obtained by solving the complete system of 
governing equations, is also conducted, and results are reported in the range 
102 < R < 103, 4 < A _< 8, and 0.6 < n < 1.4. The numerical experiments confirm the flow 
features and scales anticipated by the approximate boundary-layer solution. 

Keywords:  natural convection; porous media; non-Newtonian fluid 

I n t r o d u c t i o n  

Buoyancy-induced convection in a fluid-saturated porous 
medium is of considerable interest, owing to several geophysical 
and engineering applications. Over the last two decades, much 
work has been done on this topic. A problem of fundamental 
interest that has received attention from many investigators is 
that of natural convection in confined enclosures driven by 
horizontal temperature gradients. Analytical works reported 
include boundary-layer analyses by Weber (1975), Walker and 
Homsy (1978), and Bejan (1979). Simpkins and Blythe (1980) 
have presented integral solutions, whereas approximate 
solutions have been obtained by Walker and Homsy (1978) and 
Bejan and Tien (1978). Much of this activity, both numerical 
and experimental, has been summarized in a recent book by 
Nield and Bejan (1992). 

Studies on flow in non-Newtonian fluid-saturated porous 
media, on the other hand, have only just begun, stimulated by 
a broad range of applications such as chemical reactor design, 
polymer engineering, certain separation processes, geophysical 
systems, ceramic processing, enhanced oil recovery, and 
filtration. One of the first studies of natural convection of 
non-Newtonian fluids in porous media was conducted by Chen 
and Chen (1987) who considered a power-law fluid adjacent 
to an impermeable horizontal plate heated with a nonuniform 
heat flux. In subsequent papers, these authors extended their 
work to include the cases of a horizontal plate with a prescribed 
temperature variation (1988a) and an isothermal vertical plate 
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(1988b). They used the power-law model suggested by 
Christopher and Middleman (1965) and later modified by 
Dharmadhikari and Kale (1985). On the basis of the 
boundary-layer approximation, the effect of the power-law 
index n on the heat transfer characteristics was discussed. The 
rheological effects of power-law fluid with a yield stress on the 
natural convection mechanism over a heated vertical cylinder 
embedded in a porous medium were considered by Pascal and 
Pascal (1989). The cases of constant temperature boundary and 
constant heat-flux boundary, along the heated vertical cylinder, 
were analyzed. From approximate similarity solutions obtained 
in a closed form, these authors demonstrated that the resulting 
temperature and velocity profiles are not the same as in the 
Newtonian-fluid case. They also demonstrated that the onset 
of natural convection occurs, provided that certain inequalities, 
which depend strongly on the yield stress, are satisfied. The 
buoyancy-induced flows of non-Newtonian fluids over 
nonisothermal bodies of arbitrary shape within saturated 
porous media were considered by Nakayama and Koyama 
(1991). Using the power-law model of Dharmadhikari and Kale 
(1985) and introducing a general similarity transformation, the 
governing equations for the flow and transport around a 
nonisothermal body of arbitrary shape were reduced to a set 
of ordinary differential equations. It can be shown that any 
plane or axisymmetrical body of arbitrary shape possesses a 
corresponding family of surface wall temperature distributions 
that permit similarity solutions. Recently, non-Newtonian 
Couette flow through inelastic fluid-saturated porous media 
due to a moving plate boundary have been investigated 
analytically by Nakayama (1992). The momentum equation, 
which includes both the viscous (Brinkman) and inertia 
(Forchheimer) terms, was solved to examine the effects of the 
pseudoplasticity, boundary friction, and porous inertia on the 
velocity profile and the shear stress at the moving wall. It was 
found that the effects of the Darcy number (boundary frictional 
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effect) and the power-law index n are very much alike in the 
sense that the decrease of these parameters results in thinning 
of the velocity boundary layer. The effect of the Forchheimer 
term (inertial effect) is to reduce the velocity throughout the 
porous medium. 

All the above studies are concerned with the problem of 
natural convection of a non-Newtonian fluid through an 
unbounded porous medium. On the other hand, heat transfer 
by natural convection across enclosures has been studied less. 
The only available investigation on this flow configuration is 
provided by Amari et al. (1993). The case of a rectangular 
enclosure heated from the bottom or by the side was considered 
by these authors, using the power-law model proposed by 
Pascal (1983). An approximate analytical solution, valid for 
shallow cavities, was derived on the basis of a parallel flow 
configuration and an integral form of the energy equation. 
Solutions for the flow and temperature fields and for the 
Nusselt number were obtained explicitly in terms of a modified 
Rayleigh number and the power-law index. A numerical study 
of the same phenomenon, obtained by solving the complete 
system of governing equations, was also conducted. Good 
agreement was found between the analytical prediction and the 
numerical simulation. Recently, Bian et al. (1993) have extended 
this study to the case of an inclined cavity. 

The main objective of this paper is to address the question 
of implications of the rheological effects on the natural 
convection heat transfer within a vertical rectangular porous 
enclosure heated isothermally from the side. The power-law 
model proposed by Pascal (1983) is used to characterize the 
non-Newtonian fluid behavior. Using the boundary-layer 
approximations, the resulting simplified governing equations 
are solved using a similarity transformation and an integral 
form of the energy equation. The structure of the flow and the 
heat transfer through the cavity is obtained in terms of a 
modified Rayleigh number, power-law index, and aspect ratio 
of the enclosure. A numerical study of the same phenomenon, 
obtained by solving the complete system of governing 
equations, is also conducted. The results presented here are 
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Figure I Definition sketch of the problem 

relevant to a better understanding of the general flow and heat 
transfer characteristics of non-Newtonian flows in porous 
media. 

Governing equations 

The problem under consideration is shown in Figure 1. A 
two-dimensional (2-D) vertical rectangular enclosure is filled 
with a homogeneous isotropic porous medium saturated by a 
non-Newtonian power-law fluid. Both horizontal boundaries 
are adiabatic, and the vertical boundaries are held at constant 

N o t a t i o n  

A Aspect ratio of the cavity, H/L 
a Coefficient, Equation 22 
B* Coefficient, Equation 33 
b Coefficient, Equation 22 
c Integration constant, Equation 26 
d Coefficient, Equation 29 
g Acceleration due to gravity 
H Height of the cavity 
k Thermal conductivity of fluid-saturated porous 

medium 
K Permeability of the porous medium 
L Length of the cavity 
l Characteristic length in the boundary-layer regime 
n Power-law index 
Nu Nusselt number, Equation 7 
p' Pressure 
q' Heat transfer rate 
R Modified Rayleigh number, KpgflAT' (L/ot)"/e 
T' Temperature 
AT' Temperature difference T h - T' c 
17' Superficial velocity 
u' Superficial velocity in the x'-direction 
v' Superficial velocity in the y'-direction 
x', y' Coordinates 

Greek 

0 
# 

P 

symbols 

Effective thermal diffusivity 
Coefficient of thermal expansion 
Dimensionless thickness of the boundary layer 
Parameter in power-law model, Equation 3 
Similarity variable 
Dimensionless temperature 
Dynamic viscosity for a Newtonian fluid 
Apparent viscosity for a power-law fluid, Equation 3 
Density 
Porosity of porous media 
Dimensionless stream function 

Superscripts 

' Dimensional quantities 
* Dimensionless quantities 

Subscripts 

c Cold wall 
h Hot wall 
o Core region 
max Maximum value 
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temperatures T' c and T~. The cavity is of height H and width L. 
It is assumed that the fluid and the porous medium are 
everywhere in local thermodynamic equilibrium and the 
properties of the fluid and porous medium are constant. The 
governing equations for the conservation of momentum and 
energy in the Darcy regime and with the Boussinesq 
approximation are given by (Amari et al. 1993) 

k 

- F,* \ , ~ x *  ax* ay-- ay* ay* / (11 

a T *  a T *  
V2T * = u* + v* - -  (2) 

ax* ay* 

fla* - -  ]~'a - -  (U*2 + V*2)n-1/2  (3) 
e(~/L)"-  1 

where /~* is the dimensionless apparent viscosity, n the 
power-law index,/3 a parameter in the power-law model given 
by (Pascal 1983) 

2# 
/ 3 =  

8 "+ a/2(K~b)"- l/2(n/(1 + 3n))" 

and R = Kpofl(T'~ - T'c)(L/~)"/e is a modified Rayleigh number 
for flow of non-Newtonian fluids through a porous medium. 
All other symbols are defined in the nomenclature, and primes 
denote dimensional quantities. 

In Equation 1, ~,* is a dimensionless stream function and is 
defined as 

u* - v* - (4) 
ay* ax* 

such that the equation of continuity is identically satisfied. 
The governing equations have been reduced to dimensionless 

forms by using the following scales: L for length, ~/L  for 
velocity, and AT = T~ - T' c for temperature. 

The nondimensional boundary conditions over the walls of 
the enclosure are 

~ * = 0 ,  T * = 0 ,  o n y * = 0  (5a) 

~O* = 0, T* = 1, on y* = 1 (5b) 

a T *  
~O*=0, =0 ,  o n x * = 0 ,  A (5c) 

ax* 

where A = H / L  is the cavity aspect ratio. 
Equations 1 to 4, together with the boundary conditions 

(Equation 5), complete the problem definition. The solution is 
dependent on the parameters R, A, and n. In the following 
sections, we report a boundary-layer solution of the kind 
developed by Simpkins and Blythe (1980), and a numerical 
solution, which is able to handle the complete form of the 
governing equations. 

B o u n d a r y - l a y e r  s o l u t i o n  

When the modified Darcy-Rayleigh number is large, the flow 
is characterized by thin thermal boundary layers adjacent to 
the vertical walls. The vertical boundary layers are governed 
by Equations 1 to 4. The scales recommended by these 
equations can be found based on the method of scale analysis. 
This analysis will be presented first, and then an approximate 
solution for the boundary-layer momentum and energy 
equations will be discussed. 

At sufficiently high Rayleigh numbers, the flow will have a 
boundary-layer core structure consisting of a core region and 
two vertical boundary layers. In this regime, along the two 

vertical walls, u*>> v*, and the apparent viscosity #=* has 
the approximate relation /a* ~ u *c"-1~. Following the scale 
analysis presented by Weber (1975) for the natural convection 
of a Newtonian fluid in a vertical porous layer, it is readily 
found from Equations 1 and 2 and boundary conditions 
(Equation 5) that 

3" ~ AU2R - x/2, 

t~* = A1/2R 1/2" 

u ~ R 1/', v* ~ A-1/ZR1/2n (6) 

Nu ~ A -  1/2R1/2" 

where 6" is the dimensionless thickness of the horizontal 
boundary layer and Nu is the Nusselt number defined as the 
ratio of total heat transfer over the heat transfer by pure 
conduction: 

q' 
Nu = --  (7) 

q'o 
From the scales of the boundary flow recommended by the 

scale analysis, it is convenient to renormalize the governing 
equations by introducing the following transformations: 

x = x ' A ,  y = y * R  1/2", Ill = ~ I*R-  t/Zn, T = T* (8) 

Substituting the above variables into Equations 1 to 3 and 
making the usual boundary-layer approximations, it is found 
that the dimensionless boundary-layer equations are 

a (a y 
ay \ a y J  = ~y  (9) 

a~ a T  at~ a T  aZT  
- -  ( 1 0 )  

ay ax ax ay ay e 

Since the temperature and fluid fields are centrosymmetrical 
(Gill 1966), only one boundary layer needs to be considered. 
Also, the temperature and stream functions in the core region 
are assumed to be a function ofx only. We choose the boundary 
layer along the cold wall and establish the necessary boundary 
conditions for the above equations: 

~O=0, T = 0 ,  a t y = 0  (lla) 

= ~Oo(X), T = To(x ), at y --* oo (lib) 

where $o(x) and To(x) are the dimensionless stream function 
and temperature distributions within the core of the cavity, 
respectively. 

For the special case of a Newtonian fluid (n = 1), Weber 
(1975) solved Equations 9 and 10 by using the modified Oseen 
method. However, this technique cannot be used here owing 
to the nonlinearity involved in Equation 9. A consistent 
boundary-layer method, valid for non-Newtonian fluids, is 
proposed as follows. 

Equations 9 and 10 are first transformed by introducing the 
following similarity variables: 

T -  To(x) 
= Tlo/"f(x,  t/), O(x, q) (12) 

To(x) 

where r /=  ~ Tlo/2" is the proposed similarity variable. 

The above transformations are similar to those employed by 
Nakayama and Koyama (1991) in the study of the 
free-convection flow of non-Newtonian fluids along a 
nonisothermal body. 

Using the above transformed coordinates, Equations 9 and 
10 and the boundary conditions (Equation 11) can be expressed 
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as 

(f')" = 0 (13) 

0f oo _ O' ~x] - -  f'I(x) O" + f-~ [l + ?]--  f'OI(x)= x[f'-~x 
(14) 

where 

x dTo din T O 
I(x) . . . . .  (15) 

TO dx d l n x  

with the boundary conditions 

f = 0 ,  0 = 1 ,  a t r / = 0  (16a) 

0 = 0 ,  a tq--*oo (16b) 

The primes in the above equations denote differentiation 
with respect to q. It is noted that the unknown core temperature 
TO is included in Equation 15. Generally the effect of the values 
Of/Ox and 00/Ox in Equation 14 is dependent on the selection 
of the similarity variables. Nevertheless, it is still assumed that 
the values Of/Ox and 00/0x are negligibly small compared with 
other terms in Equation 14. The possible discrepancy, owing 
to inexact selection of the similarity variable in the core 
structure, will be discussed in a later portion of this section. 
With these approximations, all derivatives with respect to x 
vanish, and Equation 14 reduces to the one having the so-called 
local similarity solution characteristic: 

0 " + - - f O ' [  1 2  + ? ]  - f 'Ol(x)  = - f ' I ( x )  (17) 

As is well known, a constant temperature at infinity 
(To = constant) yields a similarity solution with ¢ ( x , q ) =  
x~/2$(q). The similarity solution for a natural flow along a 
vertical plate has been studied by Chen and Chen (1988). 
However, for a porous cavity, the temperature distribution at 
the core region To(x) is unknown and certainly not constant. 
The steps to determine the core structure To(x) by using the 
integral method are outlined below. 

Integrating the momentum equation (Equation 9) with 
respect to y and making use of the boundary condition 
(Equation 11), one obtains 

u = (T - To) TM (18) 

Integration of Equation 10 with respect to y in combination 
with Equation 11 yields 

fO~ ) ' = 0  

d (T  - To)'+'/" dy + ~/o aT° OT (19) 
dx Ox gy 

Similarly, integration of the expression u = g¢/gy leads to 

L ~k o = (T -- To) TM dy (20) 

Equation 20 is substituted into Equation 19 to yield 

_ _  = T"o + ~/" d dTO - b  (21)  
a dx (T° ~k°) -- ~k° dx ~k o 

where 

a S~ on + l/n( x' ?])d~] I^ 0 
= ~ O1/.(x ' rl)dq , b = -O'(x,  0).,, ,  Ol/"(x, rl)drl (22) 

Obviously, a and b are functions of power-law index n and 
x respectively. They can be determined if the local similarity 
temperature profile 0(x, q) is given. It is noted that from the 
preceding calculations, a(x) and b(x) are found to be weak 
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functions of x. To simplify the procedure, the values of a and 
b are taken at x = 1/2, and then they are considered as 
constants in the following analysis. 

Equation 21 provides a single relationship between the 
unknowns ~ko and T O that governs the core structure of the 
cavity. A second relationship can be obtained from the 
boundary-layer solution for the hot wall. Using the 
centrosymmetry characteristic of the problem, T o must be odd 
and ~b o must be even about the cavity center x = 1/2, or 

To(x ) = 1 - To(1 - x), $o(X) = tPo(1 - x) (23) 

The second integral form of the energy equation for the hot 
wall shows that 

d dTO = b (1 -- To) "+1 / "  
a dx-- [(1 - TO)So] + ~ko dx  ~'o (24) 

From Equations 21 and 24, one can further obtain 

a - 1 dTO To"+I/"(l -- To) + TO(I - To).+t/. 
- -  ¢o (25) 

a doe T"o +,/" - (1 - -  TO).+ t / .  

such  t h a t  

[ToO - TO)I(1-a)/a 
~'o = c (26) 

[Tlo/" + (I -- TO)I/.].(t-=)/o 

where c is the integration constant. 
Consequently, from Equation 26, if $o = 0 on the horizontal 

boundaries, it is necessary that 

To(0 ) = 0, TO(l) = 1 (27) 

The following ordinary differential equation can be obtained 
from Equations 25 and 26: 

dTO b [Tlo/n + (I - To)l/n]l+2n(l--a)/a 
dx - (1 - a)c 2 [TO(1 -- To)](2-3a)/a (28) 

The coefficients in the above equation can be determined by 
integrating it and using the condition of Equations 27: 

b 1 [~(I -- ~)]t2-a.)/. 

d = (1 - a)c ~ 2  - o ~ [~l/. + (1 - ~)1/.]1 +2.(1-.)/. d~ (29) 

The coefficients of a, b, c, and d are functions of the power-law 
index n. 

By setting the value of To (it can simply be chosen as T O = 1 
at the first step), Equation 13 and 17 together with the 
boundary condition (Equation 16) were solved using the 
second-order Runge-Kutta method in order to obtain the 
dimensionless f(q) and Off/). The new value of TO was then 
evaluated by solving Equation 28, in which a and b were 
determined from Equation 22 with Simpson's integration 
scheme. The procedure was repeated until a convergent 
solution was reached. 

It must be mentioned that, for the special case of a 
Newtonian fluid (n = 1), Simpkins and Blythe (1980) developed 
an integral relation approach to study natural convection in 
porous cavities. The core temperature profile was seen as a 
function of r/ only, i.e., [Off/)]. Unfortunately, the profile Off/) 
needs to be specified in advance, and then a and b are 
determined from the specified temperature profile by Equation 
22. Therefore, the way of specifying Off/) is of importance. For  
the case of n # 1, it is more difficult to properly propose this 
kind of a core structure. 

The stream function at the center of the core region, or the 
maximum stream function in the cavity, can be derived by 
setting TO = 1/2 in Equation 26: 

i//o(1) = ipma x = C(1){l + n ) ( 1 - a ) / a  (30) 
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Table 1 Maximum stream function for various power-law indexes 
n 

n 0.6 0.8 1.0 1.2 1.4 
°/max 0.530 0.636 0.730 0.801 0.868 

The values for different power-law indexes are given in Table 1. 
Figures 2 and 3 show the distributions of the core structure 

for different power-law indexes n as predicted by the present 
boundary-layer analysis. The points in these graphs are the 
results obtained by Simpkins and Blythe (1980) while studying 
the case of Newtonian fluids (n = 1). Very good agreement is 
observed between the present study and their solution for both 
the core-temperature and stream-function profiles. It is seen 
from Figure 2 that the core-temperature distributions are 
almost unaffected by the value of the power-law index. The 
solutions exhibit centrosymmetrical properties as expected, and 
the value of To is 0.5 at x = 1/2, where the three curves intersect. 
The curves are seen to be close to a straight line in the central 
part of the layer. The smaller the power-law index n is, the 
smaller is the temperature gradient in that region. It is also 
noted that the temperature gradients are not equal to zero at 
the horizontal boundaries. As a matter of fact, the core solution 
is not affected by the thermal characteristics of the horizontal 
surfaces. For the case of Newtonian fluids, a detailed discussion 
on the effects of the horizontal boundary conditions is available 
from Bejan (1979). 

Figure 3 shows the variation of the core stream function for 
the case of non-Newtonian fluids. Its value at the two 
horizontal boundaries is set equal to 0 by Equation 27. A larger 
power-law index n yields a smaller value of the core stream 
function. Its maximum value, ff . . . .  occurs at the center of 
cavities. The detailed data of ~km,, with different power-law 
indexes have been listed in Table 1. 

In terms of the variables already defined, the Nusselt number 
representing the amount of heat transfer across the enclosure 
(Equation 7) can be written as 

R1/Z"fo1~,=o Nu = ~ / 2  dx (31) 

0.8 

0.6 

To 

0.4 

0.2 

Figure 2 

. . . . .  n=0.6 ! 
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X 

Figure 3 The core stream function 

Based on the definition of similarity variables, the Nusselt 
number can be further expressed as 

B* 
Nu = AS ~ R 1/2" (32) 

where 

11 b T"°+I/" B*(n) = dx (33) 
Jo 

is a function of the power-law index n only. 
Substituting Equation 26 into Equation 33 and using 

Equation 28, one obtains 

f o  ~(" + =)/"(1 - ~)(1 - a)/= - 1 d~ B*(n) = (1 - a)c (34) 
[~lj. + (I - ¢)i/.]i +~.~i-o~j,~ 

For the case of Newtonian fluids, n = I, the above equation 
reduces to 

// B* = (1 - a)c ~1/.(1 _ ~)(1/.)-2 d~ 

( :  1 ) 
= (1 - a)cB + 1, - - 1 (35) 

a 

where B is the beta function. 
Equation 35 is the same as that developed by Simpkins and 

Blythe (1980) while studying the flow of Newtonian fluids in a 
porous cavity with an integral method. However, in the present 
study, a and b are determined from the coupled Equations 17 
and 28. 

B*, as a function of the power-law index n only, is listed in 
Table 2. For n = 1, the result of B*(0.509) is very vlose to the 
value 0.51 reported by Simpkins and Blythe (1980) and the 
value 0.51 4-0.01 of Walker and Homsy (1978). For 
convenience, based on the results in Table 2, B* is further 

Table 2 Variation of the coefficient B* with the power-law index n 

n 0.6 0.8 1.0 1.2 1.4 
B* 0.394 0.457 0.509 0.552 0.588 

388 Int. J. Heat and Fluid Flow, Vol. 15, No. 5, October 1994 



14 

Nu.A I/2 

Figure 4 
( n =  1) 

, Present theory / 

• $impkine-Blythe (1980) 

10 

20 

i ' ' J ' ' ' '1000 4100 200 500 
R 

Nusselt number as a function of R for a Newtonian fluid 

correlated into a function of n in a polynomial form as follows: 

B*(n) = 0.153 + 0.475n - 0.117n 2 (36) 

which is suitable for the boundary-layer regime in the range of 
n = 0.6 to 1.4. 

Figure 4 shows a detailed comparison of the averaged 
Nusselt number, Nu, between the present method and the 
previous theories for the case of a Newtonian fluid. The results 
of Simpkins and Blythe (1980) are based on an integral method 
for the boundary-layer structure, while those of Walker and 
Homsy (1978) are based on the self-consistent boundary-layer 
theory obtained by transforming the boundary equations into 
Blasius coordinates and solving with a numerical technique. 
The Nusselt number results for both theories have a form 
similar to that Equation 32, i.e., the Nusselt number Nu is 
proportional to (R/A) 1/2. An excellent agreement between the 
present study and these two theories is observed. 

Finally, it must be mentioned that the same similarity 
variables are used as those introduced by Nakayama and 
Koyama (1991) in their study of natural convection along a 
nonisotherrnal body. However, it is noted that the core 
structure and heat transfer rate are influenced by the solution 
of similarity temperature profile 0 only through the parameters 
a and b. Since the parameters a and b are defined in terms of 
the integral across the layer (see Equation 22), the dependence 
of the overall core structure on the precise form of O(x, ~l) is 
relatively weak. Thus the selection of the similarity variables 
for the present problem is not too important, since an integral 
procedure is used. This conclusion has been demonstrated in 
the past by the analysis of Simpkins and Blythe (1980) while 
studying the case of Newtonian fluids. They showed that the 
selection of three different profiles resulted in a negligible effect 
on the core structure and heat transfer through the cavity. 

N u m e r i c a l  s o l u t i o n  

In this section we present a numerical solution of the complete 
governing equations (Equations 1 to 5). This solution, which 
can handle both boundary-layer flows (high R) and flows 
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without distinct boundary layers (low R), will be used to 
determine the accuracy of the approximate analytical 
boundary-layer solution. 

The governing equations (Equations 1 to 5) were solved using 
the control volume finite-difference method described by 
Patankar (1980). The variables T*, S*, u*, and v* are used in 
a staggered grid system. The computational domain is divided 
into rectangular control volumes with one grid point located 
at the center of the control volume that forms a basic cell. 
Temperature T* and stream function S* are calculated at these 
grid points. Velocities u*, v*, and the dimensionless viscosity 
coefficient p* are calculated for points that lie on the faces of 
these basic cells. 

Nonuniform grids are used in the program, allowing a fine 
grid spacing near the two vertical walls, especially for the case 
of large Rayleigh numbers R and lower power-law index n. 
Trial calculations were necessary to optimize the computation 
time and accuracy. Convergence with mesh size was verified 
by employing coarser and finer grids on selected test problems. 
In this study, the values of n are varied from 0.6 to 1.4, which 
include shear-thinning (n < 1) and shear-thickening (n > 1) 
fluids. The approximate boundary-layer solution, developed in 
the previous section, is valid asymptotically in the limit of a 
shallow cavity and for high Rayleigh numbers. Therefore, the 
Rayleigh number is varied from 102 to 103, and the two aspect 
ratios A = 4, 8 are chosen for the numerical calculations. The 
computations reported in this paper have been performed on 
a 61 x 41 grid for A = 4 ,  which has found to model 
accurately the flow fields described in the results for most of 
the cases considered. For instance, when R = 1,000, A = 4, and 
n = 1.0, Nusselt numbers of 8.05 and 8.02 and maximum stream 
functions of 45.05 and 45.07 were obtained with 61 x 41 and 
81 × 61 meshes, respectively. For A = 8, a mesh of 61 × 61 was 
utilized. 

The criterion used for the iterative convergence is 

I f~. i .ow - f~.io,~l 
max < r I (37) 

lY,.jo,~I 
where r s has been taken as 10 - 4  fo r  ~k* and 10 -6  fo r  T* .  The 
solutions are obtained at a sequence of Rayleigh numbers for 
a given n. 

Figures 5 and 6 show typical streamline and temperature 
fields obtained numerically for non-Newtonian fluids with the 
power-law index of n = 0.6, 1, and 1.4, respectively. The values 
of the Rayleigh number, R = 102 and 10 a, have been selected 
to represent the asymptotic flow and the boundary-layer 
regimes, respectively. The streamlines (left) are equally spaced 
with specified increments AS* between a value of zero on the 

Ca) Cb) (c) 

Numerical solutions for the f low and temperature fields Figure 5 
A = 4, R =  100. (a) n = 0.6, ¢* = 44.1; (b) n = 1.0,~k* = 10.6; (c) 
n = 1.4, ¢" = 2.9 
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(b) (c) Ca) 

C o n c l u s i o n s  

Figure 6 Numerical  solutions for the f l ow  and temperature f ields 
A = 4, R = 1000. (a) n = 0.6, ~* = 317.2;  (b) n = 1.0, ~b* = 45.0; 
(c) n = 1 . 4 , ~ , * = 1 3 . 8  

boundaries and the extreme value ~b*,~ at the center. The 
isotherms (right) are also equally spaced between zero (left 
vertical wall) and one (right vertical wall). The dimensionless 
temperature at the center of the cavity is equal to one half, due 
to the centrosymmetric character of the problem. The 
streamlines are observed to be closely spaced near the solid 
boundaries in both cases R = 102 and R = 103. This 
configuration indicates that, as expected, the fluid velocity is a 
maximum on the boundaries, since Darcy's law allows the fluid 
to slip on them. It is also observed that the streamlines become 
relatively more sparsely spaced near the solid boundaries and 
the isotherms in the core region are more flat at the higher 
values of the Rayleigh number R. Isotherms and streamlines 
are spaced closer together near the right bottom corner and 
the left top corner, which correspond to the maximum velocity 
and local heat transfer rate respectively. 

A significant change in the velocity and temperature fields is 
found with a change in power-law index n at a given Rayleigh 
number R. The shear-thinning fluid (n = 0.6) tends to increase 
the flow circulation within the cavity, making the boundary 
layer thinner near the two vertical walls and the core fluid more 
stagnant as compared with the Newtonian fluid (n = 1). On the 
other hand, the shear-thickening fluid (n = 1.4) tends to slow 
down the flow. For instance, it can be seen from Figure 5c that 
for R = 100, the isotherms are almost parallel to the vertical 
walls, indicating that the circulation within the cavity is weak 
and heat transfer is almost by pure conduction (asymptotic 
regime). The maximum stream function, ~*ax, which is a direct 
measure of the magnitude of the circulation, decreases from 
44.1 to 2.9 as n is increased from 0.6 to 1.4 when R = 100. Also, 
it is seen from Figures 5 and 6 that the smaller the power-law 
index n, the smaller is the Rayleigh number required for the 
boundary-layer regime to start. On the other hand, for n = 1.4, 
a relatively large Rayleigh number is required for the 
boundary-layer regime to start. Thus, it is seen from Figure 6c 
that, even for a Rayleigh number as high as R = 103, a 
relatively weak boundary-layer structure is reached. The slope 
of the axis of the cells changes with n. For  example, at R = t02, 
the axis of flow field is below the diagonal of the cavity for 
n = 0.6, but with an increase in n the axis moves towards the 
vertical middle plane. Therefore, when the Rayleigh number is 
larger or the power-law index is smaller, the boundary-layer 
thickness on the vertical walls is thinner and the convection in 
the cavity is stronger. It should be noted that the flows in the 
cavity are always unicellular in the range of parameters 
considered. 

Of engineering interest is the total heat transfer rate across 
the cavity, which is presented in terms of the Nusselt number, 

defined as 

1 
N U = A . v  ~Y* y*=o 

(38) 

Note that the actual heat transfer rate is referenced to the heat 
transfer by conduction. The above equation was used to 
evaluate Nu numerically. 

Figure 7 shows the effect of the Rayleigh number, R, on the 
averaged Nusselt number Nu for different power-law indexes n. 
The coordinate system was set according to the prediction of 
the scaling analysis. The boundary-layer solution, represented 
by Equation 32, is illustrated with solid lines. They are straight 
lines in the selected coordinates and the slopes are different, 
depending on the power-law index. The points represent the 
results of the numerical solution. The two aspect ratios A = 4 
and 8 have been chosen to check the accuracy of the present 
analytical solution. Generally, a very good agreement between 
the boundary-layer solution and the numerical simulations is 
observed from Figure 7 for both cases A = 4 and 8. 
Nevertheless, small differences are seen at low Rayleigh 
numbers and large power-law indexes. These can be explained 
as the failure of the boundary-layer assumption. As discussed 
earlier, a larger power-law index requires a larger Rayleigh 
number for the boundary-layer regime to start. 

500 

Steady natural convection in a rectangular cavity saturated 
with non-Newtonian fluids is considered based on the modified 
Darcy power-law model of Pascal (1983). In the boundary-layer 
regime, a new consistent theory is proposed that is valid for 
non-Newtonian fluids. The average Nusselt number has been 
obtained as a function of the Rayleigh number and power-law 
index of fluids. The results obtained for the special case of a 
Newtonian fluid are found to be in good agreement with those 
available in the literature. A numerical study of the same 
phenomenon, obtained by solving the complete system of 
governing equations, is also conducted. Two aspect ratios, 
A = 4 and A = 8, are chosen to check the results of the 
proposed analytical method. A good agreement between the 

n=0.6 
Analytical 

Numerical A 1 . ~  
• 4 _ ,  

Nu.~ 12 

100 

20 

5 

h I i , k i , 

2100 200 500 1000 

Figure 7 Variation of the overall Nusselt  number for  d i f ferent  
power-law indexes 
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boundary-layer solution and numerical simulations are found 
in the range of Rayleigh numbers considered. The power-law 
index n is observed to influence the temperature and flow fields 
significantly. For  a given R, the boundary-layer flow regime 
reverts to the asymptotic and then to the conduction regime 
as the power-law index n is increased, while the heat transfer 
rate through the vertical walls greatly increases as the 
power-law index is decreased. 
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